3.251 \(\int x^3 (d+e x)^2 (d^2-e^2 x^2)^p \, dx\)

Optimal. Leaf size=149 \[ \frac{2}{5} d e x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )-\frac{d^4 \left (d^2-e^2 x^2\right )^{p+1}}{e^4 (p+1)}+\frac{3 d^2 \left (d^2-e^2 x^2\right )^{p+2}}{2 e^4 (p+2)}-\frac{\left (d^2-e^2 x^2\right )^{p+3}}{2 e^4 (p+3)} \]

[Out]

-((d^4*(d^2 - e^2*x^2)^(1 + p))/(e^4*(1 + p))) + (3*d^2*(d^2 - e^2*x^2)^(2 + p))/(2*e^4*(2 + p)) - (d^2 - e^2*
x^2)^(3 + p)/(2*e^4*(3 + p)) + (2*d*e*x^5*(d^2 - e^2*x^2)^p*Hypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2])/(5
*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.129887, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1652, 446, 77, 12, 365, 364} \[ \frac{2}{5} d e x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )-\frac{d^4 \left (d^2-e^2 x^2\right )^{p+1}}{e^4 (p+1)}+\frac{3 d^2 \left (d^2-e^2 x^2\right )^{p+2}}{2 e^4 (p+2)}-\frac{\left (d^2-e^2 x^2\right )^{p+3}}{2 e^4 (p+3)} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

-((d^4*(d^2 - e^2*x^2)^(1 + p))/(e^4*(1 + p))) + (3*d^2*(d^2 - e^2*x^2)^(2 + p))/(2*e^4*(2 + p)) - (d^2 - e^2*
x^2)^(3 + p)/(2*e^4*(3 + p)) + (2*d*e*x^5*(d^2 - e^2*x^2)^p*Hypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2])/(5
*(1 - (e^2*x^2)/d^2)^p)

Rule 1652

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int x^3 (d+e x)^2 \left (d^2-e^2 x^2\right )^p \, dx &=\int 2 d e x^4 \left (d^2-e^2 x^2\right )^p \, dx+\int x^3 \left (d^2-e^2 x^2\right )^p \left (d^2+e^2 x^2\right ) \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int x \left (d^2-e^2 x\right )^p \left (d^2+e^2 x\right ) \, dx,x,x^2\right )+(2 d e) \int x^4 \left (d^2-e^2 x^2\right )^p \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{2 d^4 \left (d^2-e^2 x\right )^p}{e^2}-\frac{3 d^2 \left (d^2-e^2 x\right )^{1+p}}{e^2}+\frac{\left (d^2-e^2 x\right )^{2+p}}{e^2}\right ) \, dx,x,x^2\right )+\left (2 d e \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int x^4 \left (1-\frac{e^2 x^2}{d^2}\right )^p \, dx\\ &=-\frac{d^4 \left (d^2-e^2 x^2\right )^{1+p}}{e^4 (1+p)}+\frac{3 d^2 \left (d^2-e^2 x^2\right )^{2+p}}{2 e^4 (2+p)}-\frac{\left (d^2-e^2 x^2\right )^{3+p}}{2 e^4 (3+p)}+\frac{2}{5} d e x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )\\ \end{align*}

Mathematica [A]  time = 0.135975, size = 138, normalized size = 0.93 \[ \frac{\left (d^2-e^2 x^2\right )^p \left (4 d e^5 x^5 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )-\frac{5 \left (d^2-e^2 x^2\right ) \left (d^2 e^2 \left (p^2+6 p+5\right ) x^2+d^4 (p+5)+e^4 \left (p^2+3 p+2\right ) x^4\right )}{(p+1) (p+2) (p+3)}\right )}{10 e^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

((d^2 - e^2*x^2)^p*((-5*(d^2 - e^2*x^2)*(d^4*(5 + p) + d^2*e^2*(5 + 6*p + p^2)*x^2 + e^4*(2 + 3*p + p^2)*x^4))
/((1 + p)*(2 + p)*(3 + p)) + (4*d*e^5*x^5*Hypergeometric2F1[5/2, -p, 7/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^
p))/(10*e^4)

________________________________________________________________________________________

Maple [F]  time = 0.688, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ( ex+d \right ) ^{2} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

[Out]

int(x^3*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left (e^{4}{\left (p + 1\right )} x^{4} - d^{2} e^{2} p x^{2} - d^{4}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} d^{2}}{2 \,{\left (p^{2} + 3 \, p + 2\right )} e^{4}} + \int{\left (e^{2} x^{5} + 2 \, d e x^{4}\right )} e^{\left (p \log \left (e x + d\right ) + p \log \left (-e x + d\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

1/2*(e^4*(p + 1)*x^4 - d^2*e^2*p*x^2 - d^4)*(-e^2*x^2 + d^2)^p*d^2/((p^2 + 3*p + 2)*e^4) + integrate((e^2*x^5
+ 2*d*e*x^4)*e^(p*log(e*x + d) + p*log(-e*x + d)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{2} x^{5} + 2 \, d e x^{4} + d^{2} x^{3}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((e^2*x^5 + 2*d*e*x^4 + d^2*x^3)*(-e^2*x^2 + d^2)^p, x)

________________________________________________________________________________________

Sympy [B]  time = 9.37601, size = 1323, normalized size = 8.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x+d)**2*(-e**2*x**2+d**2)**p,x)

[Out]

d**2*Piecewise((x**4*(d**2)**p/4, Eq(e, 0)), (-d**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) - d**2*log(d/e
+ x)/(-2*d**2*e**4 + 2*e**6*x**2) - d**2/(-2*d**2*e**4 + 2*e**6*x**2) + e**2*x**2*log(-d/e + x)/(-2*d**2*e**4
+ 2*e**6*x**2) + e**2*x**2*log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2), Eq(p, -2)), (-d**2*log(-d/e + x)/(2*e**4
) - d**2*log(d/e + x)/(2*e**4) - x**2/(2*e**2), Eq(p, -1)), (-d**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4
*p + 4*e**4) - d**2*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*p*x**4*(d**2 -
e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*x**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*
e**4), True)) + 2*d*d**(2*p)*e*x**5*hyper((5/2, -p), (7/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/5 + e**2*Piecew
ise((x**6*(d**2)**p/6, Eq(e, 0)), (-2*d**4*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*d
**4*log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - d**4/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e*
*10*x**4) + 4*d**2*e**2*x**2*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) + 4*d**2*e**2*x**2*
log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(-d/e + x)/(4*d**4*e**6 - 8*d**2
*e**8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(d/e + x)/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) + 2*e**4
*x**4/(4*d**4*e**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4), Eq(p, -3)), (-2*d**4*log(-d/e + x)/(-2*d**2*e**6 + 2*e*
*8*x**2) - 2*d**4*log(d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) - 2*d**4/(-2*d**2*e**6 + 2*e**8*x**2) + 2*d**2*e**
2*x**2*log(-d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) + 2*d**2*e**2*x**2*log(d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2)
 + e**4*x**4/(-2*d**2*e**6 + 2*e**8*x**2), Eq(p, -2)), (-d**4*log(-d/e + x)/(2*e**6) - d**4*log(d/e + x)/(2*e*
*6) - d**2*x**2/(2*e**4) - x**4/(4*e**2), Eq(p, -1)), (-2*d**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p*
*2 + 22*e**6*p + 12*e**6) - 2*d**4*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p +
 12*e**6) - d**2*e**4*p**2*x**4*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) - d**
2*e**4*p*x**4*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + e**6*p**2*x**6*(d**2
- e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + 3*e**6*p*x**6*(d**2 - e**2*x**2)**p/(2*e*
*6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) + 2*e**6*x**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2
+ 22*e**6*p + 12*e**6), True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{2}{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^2*(-e^2*x^2 + d^2)^p*x^3, x)